TEL. 027-220-8843

〒371-8512 群馬県前橋市昭和町3丁目39-15

研究業績PUBLICATIONS

<2021> <2020> <2019> <2018> <2017> <2016> <2015> <2014> <2013> <2012> <2011>
<2009> <2008> <2007> <2006-2000> <1999以前>

<2021>

SNAP23
 deficiency causes severe brain dysplasia through the loss of radial glial cell polarity.Kunii M, Noguchi Y, Yoshimura SI, Kanda S, Iwano T, Avriyanti E, Atik N, Sato T, Sato K, Ogawa M, Harada A. J Cell Biol. 2021 Jan 4;220(1):e201910080. doi: 10.1083/jcb.201910080. PMID: 33332551 


<2020>

ERdj8 governs the size of autophagosomes during the formation process. Yo-Hei Yamamoto, Ayano Kasai, Hiroko Omori, Tomoe Takino, Munechika Sugihara, Tetsuo Umemoto, Maho Hamasaki, Tomohisa Hatta, Tohru Natsume, Richard I Morimoto, Ritsuko Arai, Satoshi Waguri, Miyuki Sato, Ken Sato, Shoshana Bar-Nun, Tamotsu Yoshimori, Takeshi Noda, Kazuhiro Nagata. J Cell Biol. 2020 Aug 3;219(8):e201903127. doi: 10.1083/jcb.201903127.
PMID:32492081

Structural insights into tetraspanin CD9 function. Umeda R, Satouh Y, Takemoto M, Nakada-Nakura Y, Liu K, Yokoyama T, Shirouzu M, Iwata S, Nomura N, Sato K, Ikawa M, Nishizawa T, Nureki O. Nat Commun. 2020 Mar 30;11(1):1606. doi: 10.1038/s41467-020-15459-7. PMID: 32231207


<2019>

Synthesis and maintenance of lipid droplets are essential for mouse preimplantation embryonic development. Aizawa R, Ibayashi M, Tatsumi T, Yamamoto A, Kokubo T, Miyasaka N, Sato K, Ikeda S, Minami N, Tsukamoto S. Development.
2019 Nov 25; 146(22). doi: 10.1242/dev.181925.
 PMID: 31772031

初期発生におけるリソソーム分解の生理機能と分子メカニズム. 佐藤美由紀, 佐藤裕公, 佐藤健.生化学. Journal of Japanese Biochemical Society. 2019 Oct 25;91(5): 643-651 (2019) doi:10.14952/SEIKAGAKU.2019.910643


受精卵における精子ミトコンドリアの排除機構. 佐藤美由紀, 佐藤健. 実験医学. 実験医学増刊 Vol.37 No.12. 2019年7月19日発行

Structural basis of guanine nucleotide exchange for Rab11 by SH3BP5. Goto-Ito S, Morooka N, Yamagata A, Sato Y, Sato K, Fukai S. Life Sci Alliance. 2019 Mar 14;2(2). pii: e201900297. doi: 10.26508/Isa. 201900297. Print 2019 Apr. PMID: 30872413


<2018>

Rer1-mediated quality control system is required for neural stem cell maintenance during cerebral cortex development. Hara T, Maejima I, Akuzawa T, Hirai R, Kobayashi H, Tsukamoto S, Tsunoda M, Ono A, Yamakoshi S, Oikawa S, Sato K. PLoS Genet. 2018 Sep 27;14(9):e1007647. doi:10.1371/journal.pgen.1007647. eCollection 2018 Sep. PMID: 30260951

SFT-4/Surf4 control ER export of soluble cargo proteins and participate in ER exit site organization. Saegusa K, Sato M, Morooka N, Hara T, Sato K. J. Cell Biol. 2018 Jun 4;217(6):2073-2085. doi: 10.1083/jcb.201708115. Epub 2018 Apr 11. PMID: 29643117

Mutations in COA7 cause spinocerebellar ataxia with axonal neuropathy. Higuchi Y, Okunushi R, Hara T, Hashiguchi A, Yuan J, Yoshimura A, Murayama K, Ohtake A, Ando M, Hiramatsu Y, Ishihara S, Tanabe H, Okamoto Y, Matsuura E, Ueda T, Toda T, Yamashita S, Yamada K, Koide T, Yaguchi H, Mitsui J, Ishiura H, Yoshimura J, Doi K, Morishita S, Sato K, Nakagawa M, Yamaguchi M, Tsuji S, Takashima H. Brain. 2018 Jun 1;141(6):1622-1636. doi: 10.1093/brain/awy104. PMID: 29718187

The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in Caenorhabditis elegans.Sato M, Sato K, Tomura K, Kosako H, Sato K. Nat Cell Biol. 2018 Jan;20(1):81-91. doi:10.1038/s41556-017-0008-9. Epub 2017 Dec 18. PMID: 29255173


<2017>

Multiple ways to prevent transmission of paternal mitochondrial DNA for maternal inheritance in animals. Sato K, Sato M. J Biochem. 2017 Oct 1;162(4):247-253. PMID: 28981751

アロファジー:父性オルガネラを分解する新たなオートファジーと母性遺伝. 佐藤健, 佐藤美由紀. 実験医学. 2017;35:1812-1817

Monitoring of Paternal Mitochondrial Degradation in Caenorhabditis elegans. Sato M, Sato K. Methods Mol Biol. 2017 April 20. doi: 10.1007/7651_2017_17. [Epub ahead of print]. PMID: 28425080
Similar articles

ミトコンドリアDNAの母性遺伝とオートファジー. 佐藤美由紀, 佐藤健. 最新医学. 2017;72(2) 211-217


<2016>

Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells. Kunii M, et al. J Cell Biol. 2016 Oct 10;215(1):121-138. Epub 2016 Oct 3. PMID: 27697926

REI-1, a Novel Rab11 GEF with a SH3BP5 domain. Sakaguchi A, Sato M, Sato K. Commun Integr Biol. 2016 Aug 15;9(5): e1208325. PMID: 28003861

メンブレントラフィック-膜・小胞による細胞内輸送ネットワーク-. 佐藤健. 化学同人. 2016 Jul 15;214-25.

REI/SH3BP5 protein family: New GEFs for Rab11. .Sato K, Sakaguchi A, Sato M. Cell Cycle. 2016 Mar 18;15(6):767-9. doi: 10.1080/15384101.2015.1137710. PMID: 26745340

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). .Klionsky DJ, et al. Autophagy. 2016 Jan;12(1):1-222. doi: 10.1080/15548627.2015.1100356. PMID: 26799652


<2015>

Guidelines for monitoring autophagy in Caenorhabditis elegans. Zhang H, Chang JT, Guo B, Hansen M, Jia K, Kovács AL, Kumsta C, Lapierre LR, Legouis R, Lin L, Lu Q, Meléndez A, O'Rourke EJ, Sato K, Sato M, Wang X, Wu F. Autophagy. 2015;11(1):9-27. doi: 10.1080/15548627.2014.1003478. PMID: 25569839

REI-1 Is a Guanine Nucleotide Exchange Factor Regulating RAB-11 Localization and Function in
C. elegans Embryos. Sakaguchi A, Sato M, Sato K, Gengyo-Ando K, Yorimitsu T, Nakai J, Hara T, Sato K, Sato K.  Dev Cell. 2015 Oct 26;35(2):211-21. doi: 10.1016/j.devcel.2015.09.013. PMID: 26506309
*上毛新聞,読売新聞でも紹介されました.

Labeling of the Intestinal Lumen of Caenorhabditis elegans by Texas Red-dextran Feeding. Saegusa K, Sato K. Bio-Protocol. 2015 Aug 20;Vol 5, Iss 16


<2014>


Rer1 and calnexin regulate endoplasmic reticulum retention of a peripheral myelin protein 22 mutant that causes type 1A Charcot-Marie-Tooth disease. Hara T, Hashimoto Y, Akuzawa T, Hirai R, Kobayashi H, Sato K. Sci Rep. 2014 Nov 11:4:6992. PMID: 25385046
新聞各紙でも紹介されました.

C. elegans as a model for membrane traffic. Sato K, Norris A, Sato M, Grant BD. WormBook. 2014 Apr 25:1-47; doi: 10.1895/wormbook.1.77.2. PMID: 24778088

C. elegans chaperonin CCT/TRiC is required for actin and tubulin biogenesis and microvillus formation in intestinal epithelial cells. Saegusa K, Sato M, Sato K, Nakajima-Shimada J, Harada A, Sato K. Mol Biol Cell. 2014 Oct 15;25(20):3095-104. doi: 10.1091/mbc.E13-09-0530. Epub 2014 Aug 20. PMID: 25143409
*表紙になりました.

Rer1p regulates the ER retention of immature rhodopsin and modulates its intracellular trafficking. Yamasaki A, Hara T, Maejima I, Sato M, Sato K, Sato K. Sci Rep. 2014 Aug 6;4:5973. doi: 10.1038/srep05973. PMID: 25096327
*上毛新聞で紹介されました.

精子由来ミトコンドリアのオートファジーによる分解. 佐藤美由紀,佐藤健. 医学のあゆみ. 2014;250:479-482.

Fertilization-induced K63-linked ubiquitination mediates clearance of maternal membrane proteins. Sato M, Konuma, R, Sato K, Tomura K, Sato K. Development. 2014;141(6):1324-31. PMID: 24595290

Fluorescence-based visualization of autophagic activity predicts mouse embryo viability. Tsukamoto S, Hara T, Yamamoto A, Kito S, Minami N, Kubota T, Sato K, Kokubo T. Sci Rep. 2014 Mar 31;4:4533. doi: 10.1038/srep04533. Erratum in: Sci Rep. 2014;4:6178. PMID: 24681842

受精における精子ミトコンドリアの運命と母性遺伝. 佐藤健,佐藤美由紀. 細胞工学. 2014;33(4)414-419

ミトコンドリアDNAの母性遺伝を制御する多様な分子機構. 佐藤美由紀, 佐藤健. 生化学. 2013;85(5) 357-362



<2013>

Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Sato M, Sato K. Biochim Biophys Acta. 2013 Aug;1833(8):1979-84. doi: 10.1016/j.bbamcr.2013.03.010. Epub 2013 Mar 21. PMID: 23524141

Dynamic regulation of Autophagy and Endocytosis for Cell Remodeling During Early Development. Sato M, Sato K. Traffic. 2013 May;14(5):479-86. doi: 10.1111/tra.12050. Epub 2013 Feb 19. Review PMID: 23356349

Mechanisms for maternal inheritance of mitochondrial DNA. Sato M, Sato K. Seikagaku,The Journal of Japanese Biochemical Society. 2013;85(5) 357-62.

ミトコンドリアDNAの母性遺伝を制御する多様な分子機構. 佐藤美由紀,佐藤健. 生化学. 2013;85(5):357-62.

Functional Analysis of Lysosomes During Mouse Preimplantation Embryo Development. Tsukamoto S, Hara T, Yamamoto A, Ohta Y, Wada A, Ishida Y, Kito S, Nishikawa T, Minami N ,Sato K, Kokubo T. J Reprod Dev. 2013 Feb;59(1):33-39. PMID: 23080372

岩波 生物学辞典 第5版. 岩波書店. 2013 Feb


<2012>

Maternal inheritance of mitochondrial DNA: Degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy Sato M, Sato K. Autophagy. 2012 Mar;8(3):424-5 PMID: 223002002

線虫受精卵における父性ミトコンドリアのオートファジーによる選択的分解―ミトコンドリアDNAの母性遺伝のメカニズム― 実験医学. 佐藤美由紀, 佐藤健. 2012;30(4):614-618

精子由来ミトコンドリアは受精依存的に誘導されるオートファジーによって選択的に分解される. 佐藤健, 佐藤美由紀. 細胞工学. 2012;31(5):590-591.

ミトコンドリアゲノムの母性遺伝のメカニズム.佐藤美由紀, 佐藤健. 化学と生物. 2012;50:479-480.

動物におけるミトコンドリアDNAの母性遺伝の分子機構.佐藤健, 佐藤美由紀. 生体の科学. 2012;63:436-437

Maternal inheritance of mitochondrialDNA: degradation of paternalmitochondria by allogeneic organelle autophagy, allophagy. Sato M, Sato K. Autophagy. 2012 Mar;8(3):424-5 doi: 10.4161/autp.19243 Epub 2012 Feb 3. PMID: 22302002

Guidelines for the use and interpretation of assays for monitoring autophagy .Klionsky DJ, et al. Autophagy. 2012;8(4):445-544. PMID: 22966490


<2011>

Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Sato M, Sato K. Science. 2011 Nov 25;334(6059):1141-4. Epub 2011 Oct 13. PMID: 21998252
*本研究は以下でも紹介されました.
Science. 2011 Nov 25;334(6059):1069-70.
Cell. 2011 Nov 11;147:711.
Nat Rev Mol Cell Biol. 2011 Dec;12(12):771.

Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Sato M, Saegusa K, Sato K, Hara T, Harada A, Sato K. Mol. Biol. Cell. 2011 Jul 15;22(14):2579-87 PMID: 21613542. Highlights from MBoC selection に選ばれました.

The role of VAMP7/TI-VAMP in cell polarity and lysosomal exocytosis in vivo. Sato M, Yoshimura S, Hirai R, Goto A, Kunii M, Nur Atik, Sato T, Sato K, Harada R, Shimada J, Hatabu T, Yorifuji H, Harada A. Traffic. 2011 Oct;12(10):1383-93. PMID: 21740430


<2009>

Caenorhabditis elegans p97 controls germline-specific sex determination by controlling the TRA-1 level in a CUL-2-dependent manner. Sasagawa Y, Otani M, Higashitani N, Higashitani A,, Sato K, Ogura T, Yamanaka K. J Cell Sci. 2009 Oct 15;122(Pt20):3663-72 PMID: 19773360

Molecular mechanisms of protein localization in the endoplasmic reticulum. Sato K. Seikagaku. 2009 Jul;81(7):581-91. PMID: 19697861

小胞体におけるタンパク質局在化の分子メカニズム. 佐藤健. 生化学. 20019 Jul;81(7);581-91.

O-Mannosylation is required for the solubilization of heterologously expressed human beta-amyloid precursor protein in Saccharomyces cerevisiae. Mirakami-Sekimata A, Sato K, Takashima A, Nakano A. Genes Cells. 2009 Feb;14(2):205-15. PMID: 19170767

Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Sato K, Ernstrom GG, Watanabe S, Weimer RM, Chen CH, Sato M, Siddiqui A, Jorgensen EM, Grant BD. Proc. Natl. Acad. Sci. USA. 2009 Jan 27;106(4):1139-44 PMID: 19151157


<2008>

C. elegans, an amenable model system for the study of membrane trafficking in living animals. Sato M, Sato K. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme. 2008 Dec; 53 (16 Suppl):2188-92. PMID: 21038606

Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in Caenorhabditis elegans. Sato M, Grant BD, Harada A, Sato K. J. Cell Sci. 2008 Oct 1;121(Pt19):3177-86. PMID: 18765566

 
*表紙に選ばれました!


Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. Sato M, Sato K, Liou W, Pant S, Harada A, Barth Grant BD. EMBO J. 2008 Apr 23;27(8):1183-96. PMID: 18354496

線虫 C. elegans におけるメンブレントラフィック.蛋白質核酸酵素 増刊号 ”メンブレントラフィックの奔流 分子から細胞,そして個体へ” 佐藤美由紀, 佐藤健. 共立出版. 2008;53(16):2188-219.


<2007>

The Rab8 GTPase regulates apical protein localization in intestinal cells. Sato T, Mushiake S, Kato Y, SatoK, Sato M, Takeda N, Ozono K, Miki K, Kubo Y, Tsuji A, Harada R, Harada A. Nature. 2007 Jul19;448(7151):366-9. PMID: 17597763

細胞機能を支える巧みな物流管理システム. ” タンパク質の一生集中マスター” 佐藤健, 佐藤美由紀. 羊土社. 2007 Mar 10;.68-78.


<2006-2000>

Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans. Sato K, Sato M, Audhya A, Oegema K, Schweinsberg P, Grant BD. Mol. Biol. Cell. 2006 Jul;17(7):3085-94. PMID: 16672374

Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Sato M, Sato K, Fonarev P, Huang CJ, Liou W, Grant BD. Nat Cell Biol. 2005 Jun;7(6):559-69. PMID: 15895077

Endoplasmic reticulum quality control of unassembled iron transporter depends on Rer1p-mediated retrieval from the golgi. Sato M, Sato K, Nakano A. Mol. Biol. Cell. 2004 Mar;15(3):1417-24. PMID: 14699055

小胞体からのCOPII小胞形成と蛋白質選別輸送の分子メカニズム. 佐藤健, 中野明彦. 蛋白質核酸酵素. 2004 May 10;49(7):910-3.

Rer1p, a retrieval receptor for ER membrane proteins, recognizes transmembrane domains in multiple modes. Sato K, Sato M, Nakano A. Mol Biol. Cell. 2003 Sep;14(9):3605-16. PMID: 12972550

Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response. Sato M, Sato K, Nakano A. Biochem. Biophys. Res. Commun. 2002 Aug 23;296(3):560-7. PMID: 12176017.

Yeast Saccharomyces cerevisiae has two cis-prenyltransferases with different properties and localizations. Implication for their distinct physiological roles in dolichol synthesis. Sato M, Fujisaki S, Sato K, Nishimura Y, Nakano A. Genes Cells. 2001 Jun;6(6):495-506. PMID: 11442630

Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer. Sato K, Sato M, Nakano A. J Cell Biol. 2001 Mar 5;152(5):935-44 PMID: 11238450

Purification, crystallization and preliminary X-ray diffraction analysis of the yeast Sec12Deltap protein, a guanine nucleotide-exchange factor involved in vesicle transport. Dumon-Seignovert L, Matsumuto T, Monaco-Malbet S, Tomizaki T, Sato M, Sato K, Nakano A, Wakatsuki S. Acta Crystallogr D Biol Crystallog. 2001 Jun;57(Pt6):893-5. PMID: 11375521


<1999以前>

The Escherichia coli homologue of yeast RER2, a key enzyme of dolichol synthesis, is essential for carrier lipid formation in bacterial cell wall synthesis. Kato J, Fujisaki S, NakajimaK, Nishimura Y, Sato M, Nakano A.
J. Bacteriol. 1999 May;181(9):2733-8. PMID: 10217761.

The yeast RER2 gene, identified by endop;asmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis. Sato M, Sato K, Nishikawa S, Hirata A, Kato A, Nakano A. Mol. Cell. Biol. 1999 Jan;19(1):471-83. PMID: 9858571

タンパク質のリサイクリングによる小胞体局在化機構. 佐藤健, 佐藤美由紀, 中野明彦. 生化学. 1998 Dec;70(12):1387-400.

Rer1p as common machinery for the endoplasmic reticulum localization of membrane proteins. Sato K, Sato M, Nakano A. Proc. Natl. Acad. Sci. USA. 1997 Sep:2;94(18):9693-8 PMID: 9275186

Endoplasmic reticulum localization of Sec12p is achieved by two mechanisms: Rer1p-dependent retrieval that requires the transmembrane domain and Rer1p-independent retention that involves the cytoplasmic domain. Sato M, Sato K, Nakano A. J. Cell Biol. 1996 Jul;134(2):279-93. PMID: 8707815

Membrane protein retrieval from the Golgi apparatus to the endoplasmic reticulum (ER): characterization of the RER1 gene product as a component involved in ER localization of Sec12p. Sato K, Nishikawa S, Nakano A. Mol Biol Cell. 1995 Nov;6(11):1459-77. PMID: 8589449

Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. Yamazaki S, Sato K, Suhara K, Sakaguchi M, Mihara K, Omura T. J Biochem. 1993 Nov;114(5):652-7. PMID: 8113216

バナースペース

群馬大学 生体調節研究所 
細胞構造分野

〒371-8512
群馬県前橋市昭和町3丁目39-15

TEL 027-220-8843
FAX 027-220-8844